Artículos
QUE ESTUDIA LA PROTEOMICA

QUE ESTUDIA LA PROTEOMICA

Proteómica es estudio a gran escala de las proteínas, en particular de su estructura y función.Las proteínas son partes vitales de los organismos vivos, ya que son los componentes principales de las rutas metabólicas de las células. El término proteómica fue acuñado en 1997como una analogía con genómica, el estudio de los genes.

La palabra "proteoma" es la fusión de "proteína" y "genoma", y fue acuñada por Marc Wilkins en 1994, mientras trabajaba en ese concepto como estudiante de doctorado. El proteoma es la dotación completa de proteínas, incluyendo las modificaciones hechas a un conjunto particular de proteínas, producidas por un organismo o sistema. Esto varía con el tiempo y con requisitos diferentes, o debido al estrés, que sufre una célula o un organismo.

La descripción del proteoma permite tener una imagen dinámica de todas las proteínas expresadas, en un momento dado y bajo determinadas condiciones concretas de tiempo y ambiente. El estudio y comparación sistemáticos del proteoma en diferentes situaciones metabólicas y/o patológicas permite identificar aquellas proteínas cuya presencia, ausencia o alteración se correlaciona con determinados estadios fisiológicos. En el caso concreto del análisis proteómico asociado a patologías concretas, es posible identificar proteínas que permitirían diagnosticar la enfermedad o pronosticar la evolución de la misma. Dichas proteínas se conocen con el nombre genérico de biomarcadores.

La proteómica es una ciencia relativamente reciente. Para su despegue definitivo, ha sido necesaria la consolidación definitiva de la espectrometría de masas como técnica aplicada al análisis de moléculas biológicas y el crecimiento exponencial en el número de entradas correspondientes a genes y/o proteínas en las bases de datos. Esto, combinado con el empleo de potentes métodos de fraccionamiento y separación de péptidos y proteínas como el 2D-PAGE[7] (electroforesis de poliacrilamida de dos dimensiones) y la cromatografía líquida de alta resolución (HPLC), ha permitido consolidar la proteómica, desde mediados de los años 90 del siglo pasado, como ciencia para el análisis masivo de proteínas.

Complejidad del problema

La proteómica es considerada el siguiente paso en el estudio de un sistema biológico, luego de la genómica. Es más complicada que la genómica porque mientras que el genoma de un organismo es más o menos constante, el proteoma difiere de una célula a otra y de un momento a otro. Estos se debe a que en los distintos tipos de células se expresan genes distintos, lo que implica que se debe determinar hasta el conjunto básico de proteínas producido en una célula.Un factor adicional de complejidad son las modificaciones que puede sufrir la estructura o secuencia básica de la proteína, esto es, aquella que aparece codificada en el genoma. Dichas modificaciones provienen básicamente de dos fuentes: el recorte o Splicing alternativo[8] de los ARNm que codifican para la proteína y las modificaciones postraduccionales (fosforilación, metilación, acetilación, etc) que normalmente sirven para modificar o modular la actividad,función o localización de una proteína en diferentes contextos fisiológicos o metabólicos. Ambas fuentes de complejidad incrementan sustancialmente el número de proteínas diferentes que pueden existir: se estima que a partir de los 25 000-30 000 genes que codifican para proteínas en el genoma humano, podrían generarse un número de proteínas diferentes que oscilaría entre 500 000-1 000 000.

En el pasado, el análisis de los genes que se expresaban en diferentes tipos de células y tejidos y en diferentes contextos fisiológicos era realizado principalmente mediante un análisis de ARNm, pero se encontró que a menudo no existe una correlación directa entre el contenido en ARNm y el contenido proteico. Se sabe que el ARNm no siempre se traduce a proteína,[11] y que la cantidad de proteína producida por una cantidad dada de ARNm depende del estado fisiológico de la célula. No obstante, estudios recientes han confirmado que, al menos en levadura, existe una alta correlación entre el número de copias de ARNm y el de moléculas de proteína traducidas a partir de aquél . Las técnicas proteómicas actuales permiten confirmar la presencia o ausencia de una o más proteínas concretas y determinar su cantidad, bien en valores absolutos o relativos.
 

Áreas de estudio

Las principales áreas de estudio de la proteómica son:

1.Identificación de proteínas y caracterización de sus modificaciones postraducionales
2.Proteómica de "expresión diferencial"
3.Estudio de las interacciones proteína-proteína
 

Separación de proteínas

La enorme complejidad (varios miles de proteínas diferentes) del proteoma de la mayor parte de los organismos vivos obliga al empleo de diversas técnicas para separar las proteínas. Entre las técnicas más comunes se encuentran la electroforesis mono y bidimensional así como la cromatografía líquida en sus distintas variantes.

La técnica más extendida es la electroforesis en geles de poliacrilamida (llamada SDS-PAGE por sus siglas en inglés "Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis"). Se trata de una electroforesis en gel de poliacrilamida al que se le añade el detergente dodecilsulfato sódico con el fin de desnaturalizar las proteínas, asegurar que todas se encuentren cargadas y por tanto puedan migrar en un campo eléctrico en función de su masa molecular relativa (Mr). Una variante de este tipo de electroforesis es la electroforesis bidimensional o 2D-PAGE, en la que el fraccionamiento en geles SDS-PAGE es precedido por una separación basada en el punto isoeléctrico de las proteínas. La electroforesis 2D-PAGE permite alcanzar una mayor resolución y es por tanto utilizada en el análisis de proteomas muy complejos. Una vez realizado el fraccionamiento, distintos métodos de tinción (Azul Coomassie, tinción de plata, tinción Sypro Rubi, etc) permiten visualizar las proteínas separadas. La cromatografía líquida también se emplea en el fraccionamiento y separación de proteomas complejos. Las distintas variantes existentes permiten separar las proteínas en función de su hidrofobicidad (cromatografía de fase reversa), carga eléctrica (cromatografía de intercambio catiónico/aniónico) y tamaño (cromatografía de exclusión molecular).

Interacciones proteína-proteína

La mayoría de la proteína funciona en colaboración con otras proteínas, y una meta de la proteómica es identificar cuales proteínas interactúan. Esto es especialmente útil para determinar socios potenciales en las cascadas de señalización celular.

Se dispone de varios métodos para probar las interacciones proteína-proteína. El método tradicional es el sistema de doble híbrido de la levadura. Los métodos nuevos incluyen microarrays de proteína, cromatografía de inmunoafinidad seguida por espectrometría de masas, interferometría de doble polarización y métodos experimentales como phage display y métodos computacionales.

 

 



En Equipos y Laboratorio de Colombia estamos listos para asesorarle.

Redes sociales
Síguenos en Linkedin Llámanos en este momento para atenderlo. Instagram Conversemos aquí Síguenos en Facebook

Contáctenos
Teléfono(57)+604 4480388

Titulo..

Mensaje..

×